summaryrefslogtreecommitdiff
path: root/sheet.tex
diff options
context:
space:
mode:
authorukpfm <ukpfm@student.kit.edu>2022-08-31 01:30:25 +0200
committerukpfm <ukpfm@student.kit.edu>2022-08-31 01:30:25 +0200
commit597866a705917012578f3e5627b3c494ca7b7a01 (patch)
tree5715a542d80b0c1c0ddbbb900679d376eba550cc /sheet.tex
cheat-sheet and LICENSE
Diffstat (limited to 'sheet.tex')
-rw-r--r--sheet.tex405
1 files changed, 405 insertions, 0 deletions
diff --git a/sheet.tex b/sheet.tex
new file mode 100644
index 0000000..dfbc507
--- /dev/null
+++ b/sheet.tex
@@ -0,0 +1,405 @@
+\documentclass[11pt, a4paper, twoside]{article}
+\usepackage[a4paper, margin=1cm]{geometry}
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{multicol}
+\usepackage[noend]{algorithm2e}
+\usepackage[utf8]{inputenc}
+
+\setlength{\algomargin}{0pt}
+
+\begin{document}
+\section{Laufzeit}
+\hspace*{-.5cm}
+\begin{tabular}{ l l l l }
+ Notations & Asymptotischer Vergleich & Formale Definition & Grenzen \\
+ $f(n) \in \omega(g(n))$&
+ $f(n)$ wächst schneller als $g(n)$ &
+ $\forall c \exists n_0 \forall n > n_0 f(n) > c \cdot g(n)$ &
+ $$$\lim\sup\limits_{n \rightarrow \infty}\frac{f}{g} = \infty$$$ \\
+
+ $f(n) \in \Omega(g(n))$ &
+ $f(n)$ wächst min. so schnell wie $g(n)$ &
+ $\exists c \exists n_0 \forall n > n_0 c \cdot f(n) \leq g(n)$ &
+ $$$0 < \liminf\limits_{n \rightarrow \infty}\frac{f}{g} \leq \infty$$$ \\
+
+ \( f(n) \in \Theta(g(n)) \) &
+ $f(n)$ und $g(n)$ wachsen gleich schnell &
+ $f(n) \in \mathcal{O}(g(n)) \wedge f(n) \in \Omega(g(n))$ &
+ $$$0 < \lim\limits_{n \rightarrow \infty}\frac{f}{g} < \infty$$$ \\
+
+ \( f(n) \in \mathcal{O}(g(n)) \) &
+ $f(n)$ wächst max. so schnell wie $g(n)$ &
+ $\exists c \exists n_0 \forall n > n_0 f(n) \leq c \cdot g(n)$ &
+ $$$0 \leq \limsup\limits_{n \rightarrow \infty}\frac{f}{g} < \infty$$$ \\
+
+ \( f(n) \in o(g(n)) \) &
+ $f(n)$ wächst langsamer als $g(n)$ &
+ $\forall c \exists n_0 \forall n > n_0 c \cdot f(n) < g(n)$ &
+ $$$\lim\limits_{n \rightarrow \infty} \frac{f}{g} = \infty$$$ \\
+
+\end{tabular}
+
+\subsection{Vergleich}
+\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
+ $1$ & $\log^*n$ & $\log n$ & $\log^2n$ & $\sqrt[3]{n}$ &
+ $\sqrt{n}$ & $n$ & $n^2$ & $n^3$ & $n^{\log n}$ &
+ $2^{\sqrt{n}}$ & $2^n$ & $3^n$ & $4^n$ & $n!$ & $2^{n^2}$
+\end{tabular}
+
+\begin{multicols}{3}
+
+ \subsubsection*{Transitivität}
+
+ $f_1(n) \in \mathcal{O}(f_2(n)) \wedge f_2(n) \in\mathcal{O}(f_3(n))$ \\
+ $\Rightarrow f_1(n) \in \mathcal{O}(f_3(n))$
+
+ \subsubsection*{Summen}
+
+ $f_1(n) \in \mathcal{O}f_3(n)) \wedge f_2(n) \in \mathcal{O}(f_3(n))$ \\
+ $\Rightarrow f_1(n) + f_2(n) \in \mathcal{O}(f_3(n))$
+
+ \subsubsection*{Produkte}
+
+ $f_1(n) \in \mathcal{O}(g_1(n)) \wedge f_2(n) \in \mathcal{O}(g_2(n))$ \\
+ $\Rightarrow f_1(n) \cdot f_2(n) \in \mathcal{O}(g_1(n) \cdot g_2(n))$
+
+
+ \columnbreak
+
+ \subsection{Master-Theorem}
+
+ Sei $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ mit $f(n) \in \Theta(n^c)$ und i
+ $T(1) \in \Theta(1)$. Dann gilt
+ $
+ T(n) \in \begin{cases}
+ \Theta(n^c) &\text{wenn } a < b^c, \\
+ \Theta(n^c \log n) &\text{wenn } a = b^c, \\
+ \Theta(n^{\log_b(a)}) &\text{wenn } a > b^c.
+ \end{cases}
+ $
+
+ \subsubsection{Monome}
+
+ \begin{itemize}
+ \item $a \leq b \Rightarrow n^a \in \mathcal{O}(n^b)$
+ \item $n^a \in \Theta(n^b) \Leftrightarrow a = b$
+ \item $\sum_{v \in V}deg(v) = \Theta(m)$
+ \item $\forall n \in \mathbb{N}: \sum^n_{k=0}k = \frac{n(n+1)}{2}$
+ \item $
+ \sum^b_{i=a} \in \begin{cases}
+ \Theta(c^a) &\text{wenn } c < 1, \\
+ \Theta(c^b) &\text{wenn } c > 1, \\
+ \Theta(b-a) &\text{wenn } c = 1.
+ \end{cases}
+ $
+ \item $\log(ab) = \log(a) + \log(b)$
+ \item $\log(\frac{a}{b}) = \log(a) - \log(b)$
+ \item $a^{\log_a(b)} = b$
+ \item $a^x = e^{ln(a) \cdot x}$
+ \item $\log(a^b) = b \cdot \log(a)$
+ \item $\log_b(n) = \frac{\log_a(n)}{\log_a(b)}$
+ \end{itemize}
+
+ %\subsubsection{Konstante Faktoren}
+ %
+ %$a \cdot f(n) \in \Theta(f(n))$
+
+
+\end{multicols}
+
+\begin{minipage}{0.7\textwidth}
+
+ \section{Sortieren}
+
+ \begin{tabular}[t]{c || c | c | c | c}
+ Algorithmus & best case & average & worst & Stabilität \\
+ \hline
+ Insertion-Sort &
+ $\mathcal{O}(n)$ & $\mathcal{O}(n^2)$ & $\mathcal{O}(n^2)$ & stabil\\
+ Bubble-Sort &
+ $\mathcal{O}(n)$ & $\mathcal{O}(n^2)$ & $\mathcal{O}(n^2)$ & stabil\\
+ Merge-Sort &
+ $\mathcal{O}(n\log n)$ & $\mathcal{O}(n\log n)$ & $\mathcal{O}(n\log n)$ & stabil\\
+ Quick-Sort &
+ $\mathcal{O}(n \log n)$ & $\mathcal{O}(n\log n)$ & $\mathcal{O}(n\log n)$ & i.A. nicht stabil\\
+ Heap-Sort &
+ $\mathcal{O}(n\log n)$ & $\mathcal{O}(n\log n)$ & $\mathcal{O}(n\log n)$ & nicht stabil\\
+ \hline
+ Bucket-Sort &
+ $\Theta(n+m)$ & $\Theta(n+m)$ & $\Theta(n+m)$ &
+ stabil $e \in [0, m)$\\
+ Radix-Sort &
+ $\Theta(c \cdot n)$ & $\Theta(c\cdot n)$ & $\Theta(c\cdot n)$ &
+ stabil $e \in [0, n^c$\\
+ \end{tabular}
+\end{minipage}
+\hfill
+\begin{minipage}{0.3\textwidth}
+ \subsection{Heaps}
+
+ \begin{tabular}[t]{c || c}
+ Bin.-Heap & Laufzeit \\
+ \hline
+ push(x) & $\mathcal{O}(\log n)$ \\
+ popMin() & $\mathcal{O}(\log n)$ \\
+ devPrio(x, x') & $\mathcal{O}(\log n)$ \\
+ build([$\mathbb{N}$; n]) & $\mathcal{O}(n)$
+ \end{tabular}
+
+ \begin{itemize}
+ \item linkes Kind: $2v + 1$
+ \item rechts Kind: $2v + 2$
+ \item Elternknoten: $ \lfloor \frac{v - 1}{2} \rfloor $
+ \end{itemize}
+
+\end{minipage}
+
+
+\begin{multicols}{2}
+
+ \section{Datenstrukturen}
+
+ \subsection{Listen}
+
+ \begin{tabular}{c || c | c | c || c}
+ Operation & DLL & SLL & Array & Erklärung(*) \\
+ \hline
+ first & 1 & 1 & 1 & \\
+ last & 1 & 1 & 1 & \\
+ insert & 1 & 1* & n & nur insertAfter \\
+ remove & 1 & 1* & n & nur removeAfter \\
+ pushBack & 1 & 1 & 1* & amortisiert \\
+ pushFront & 1 & 1 & n & \\
+ popBack & 1 & n & 1* & amortisiert \\
+ popFront & 1 & 1 & n & \\
+ concat & 1 & 1 & n & \\
+ splice & 1 & 1 & n \\
+ findNext & n & n & n
+
+ \end{tabular}
+
+ \subsection{Hash-Tabelle}
+ $\mathcal{H}$ heißt \textbf{universell}, wenn für ein zufälliges gewähltes
+ $h \in \mathcal{H}$ gilt: $U \rightarrow \{0, ..., m-1\}$ \\
+ $\forall k, l \in U, k \neq l: Pr[h(k) = h(l) = \frac{1}{m}$ \\
+ $h_{a,b}(k) = ((a\cdot k + b) \mod p) \mod m$
+
+ \subsection{Graphen}
+
+ \begin{tabular}{c || c}
+ Algorithmus & Laufzeit \\
+ \hline
+ BFS/DFS & $\Theta(n+m)$\\
+ topoSort & $\Theta(n)$\\
+ Kruskal & $\Theta(m \log n)$\\
+ Prim & $\Theta((n+m)\log n)$ \\
+ Dijksta & $\Theta((n + m) \log n)$\\
+ Bellmann-Ford & $\Theta(nm)$\\
+ Floyd-Warshall & $\Theta(n^3)$ \\
+ \end{tabular}
+
+\end{multicols}
+
+\newpage
+
+\begin{multicols}{2}
+
+ \subsubsection{DFS}
+
+ \begin{tabular}{c || c | c}
+ Kante & DFS & FIN \\
+ \hline
+ Vorkante & klein $\rightarrow$ groß & groß $\rightarrow$ klein \\
+ Rückkante & groß $\rightarrow$ klein & klein $\rightarrow$ groß \\
+ Querkante & groß $\rightarrow$ klein & groß $\rightarrow$ klein \\
+ Baumkante & klein $\rightarrow$ groß & groß $\rightarrow$ klein \\
+ \end{tabular}
+ \subsection{Bäume}
+ \subsubsection{Heap}
+ Priorität eines Knotens $\geq (\leq)$ Priorität der Kinder.
+ \textbf{BubbleUp}, \textbf{SinkDown}. \textbf{Build} mit \textbf{sinkDown}
+ beginnend mit letztem Knoten der vorletzten Ebene weiter nach oben.
+ \textbf{decPrio} entweder updaten, Eigenschaft wiederherstellen; löschen,
+ mit neuer Prio einfügen oder Lazy Evaluation.
+
+ \subsubsection{(ab)-Baum}
+ Balanciert. \textbf{find}, \textbf{insert}, \textbf{remove}y in
+ $\Theta(log n)$. Zu viele Kinder: \textbf{rebalance} / \textbf{fuse}.
+ Zu viele Kinder: \textbf{split}.
+
+ Linker Teilbaum $\leq$ Schlüssel k $<$ rechter Teilbaum
+
+ Unendlich-Trick, für Invarianten.
+
+ \subsection{Union-Find}
+ Rang: höhe des Baums, damit ist die Höhe h mind. $2^h$ Knoten, h $\in
+ \mathcal{O}(\log n)$.
+ Union hängt niedrigen Baum an höherrängigen Baum. Pfadkompression hängt alle
+ Knoten bei einem \textbf{find} an die Wurzel.
+
+
+ \columnbreak
+ \section{Amortisierte Analyse}
+
+ \subsection{Aggregation}
+ Summiere die Kosten für alle Operationen. Teile Gesamtkkosten durch Anzahl
+ Operationen.
+
+ \subsection{Charging}
+ Verteile Kosen-Tokens von teuren zu günstigen Operationen (Charging). Zeige:
+ jede Operation hat am Ende nur wenige Tokens.
+
+ \subsection{Konto}
+ Günstige Operationen bezahlen mehr als sie tatsächlich kosten (ins Konto
+ einzahlen). Teure Operationen bezahlen tatsächliche Kosten zum Teil mit
+ Guthaben aus dem Konto. \textbf{Beachte: Konto darf nie negativ sein!}
+
+ \subsection{Potential (Umgekehrte Kontomethode)}
+ Definiere Kontostand abhängig vom Zustand der Datenstruktur
+ (Potentialfunktion)
+
+ amortisierten Kosten = tatsächliche Kosten
+ $+ \Phi(S_\text{nach}) -\Phi(S_\text{vor})$
+
+\end{multicols}
+
+\section{Pseudocode}
+\scriptsize
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ DFS(Graph G, Node v) \\
+ mark v \\
+ dfs[v] := dfsCounter++ \\
+ low[v] := dfs[v] \\
+ \For{u $\in$ N(v)}{
+ \eIf{not marked u}{
+ dist[u] := dist[v] + 1 \\
+ par[u] := v \\
+ DFS(G, u) \\
+ low[v] := min(low[v], low[u]) \\
+ }{low[v] := min(low[v], dfs[u])}
+ }
+ fin[v] := fin++ \\
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ topoSort(Graph G) \\
+ fin := [$\infty$; n] \\
+ curr := 0 \\
+ \For{Node v in V}{
+ \If{v is colored}{DFS(G,v)}
+ }
+ return V sorted by decreasing fin \\
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ Kruskal(Graph G) \\
+ U := Union-Find(G.v) \\
+ PriorityQueue Q := empty \\
+ \For{Edge e in E}{Q.push(e, len(e))}
+ \While{Q $\neq \emptyset$}{
+ e := Q.popMin() \\
+ \If{U.find(v) $\neq$ U.find(u)}{
+ L.add(e) \\
+ U.union(v, u) \\
+ }
+ }
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ Prim(Graph G) \\
+ Priority Queue Q := empty \\
+ p := [0; n] \\
+ \For{Node v in V}{
+ Q.push(v, $\infty$) \\
+ }
+ \While{Q $\neq \emptyset$}{
+ u := Q.popMin() \\
+ \For{Node v in N(u)}{
+ \If{v $\in$ Q $\wedge$ (len(u, v) $<$ Q.prio(v))}{
+ p[v] = u \\
+ Q.decPrio(v, len(u, v) \\
+ }
+ }
+ }
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ BFS(Graph G, Start s, Goal z) \\
+ Queue Q := empty queue \\
+ Q.push(s) \\
+ s.layer = 0 \\
+ \While{Q $\neq \emptyset$}{
+ u := Q.pop() \\
+ \For{Node v in N(u)}{
+ \If{v.layer = $-\infty$}{
+ Q.push(v) \\
+ v.layer = u.layer + 1
+ }
+ \If{v = z}{
+ return z.layer
+ }
+ }
+ }
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ Dijkstra(Graph G, Node s) \\
+ d := [$\infty$; n] \\
+ d[s] := 0 \\
+ PriorityQueue Q := empty priority queue \\
+ \For{Node v in V}{
+ Q.push(v, d[v])
+ }
+ \While{Q $\neq \emptyset$}{
+ u := Q.popMin() \\
+ \For{Node v in N(u)}{
+ \If{d[v] $>$ d[u] + len(u, v)}{
+ d[v] := d[u] + len(u, v) \\
+ Q.decPrio(v, d[v]) \\
+ }
+ }
+ }
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ BellManFord(Graph G, Node s) \\
+ d := [$\infty$, n] \\
+ d[s] := 0 \\
+ \For{n-1 iterations}{
+ \For{(u, v) $\in$ E}{
+ \If{d[v] $>$ d[u] + len(u, v)}{
+ d[v] := d[u] + len(u, v)
+ }
+ }
+ }
+ \For{(u, v) $\in$ E}{
+ \If{d[v] $>$ d[u] + len(u, v)}{
+ return negative cycle
+ }
+ }
+ return d
+ \end{algorithm}
+\end{minipage}
+\begin{minipage}{.25\linewidth}
+ \begin{algorithm}[H]
+ FloydWarshall(Graph G) \\
+ D := [$\infty$, n $\times$ n] \\
+ \For{(u, v) $\in$ E}{D[u][v] := len(u, v)}
+ \For{v $\in$ V}{D[v][v] := 0}
+ \For{i $\in 1,...,n$}{
+ \For{(u,v) $\in V \times V$}{
+ D[u][v] := min(D[u][v], D[u][$v_i$] + D[$v_i$][v]) \\
+ }
+ }
+ return D
+ \end{algorithm}
+\end{minipage}
+\end{document}