1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/*
* Tux-Town is a chill life-simulation game.
* Copyright (C) 2025 orangerot <me@orangerot.dev>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <raylib.h>
#include <stddef.h>
#include "assets.h"
#include "world.h"
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define CLAMP2(val, min, max) MIN(max, MAX(min, val))
#define CLAMP(val, min, max) ((val) < (min) ? (min) : ((val) > (max) ? (max) : (val)))
#define LROT(v,n) ((v << n) | (v >> (sizeof(v)*8 - n)))
#define RROT(v,n) ((v >> n) | (v << (sizeof(v)*8 - n)))
#define MAP_SIZE 64
struct ModelDirection {
enum Asset asset;
unsigned char pattern;
};
struct ModelDirection rivers[] = {
/* 0b12345678
* 1 | 2 | 3
* 8 | | 4
* 7 | 6 | 5
*/
{ .pattern = 0b11111111, .asset = ground_riverOpen },
// edge
{ .pattern = 0b11011111, .asset = ground_riverCornerSmall },
{ .pattern = 0b01011111, .asset = ground_riverSideOpen },
{ .pattern = 0b11110001, .asset = ground_riverSide },
{ .pattern = 0b01010101, .asset = ground_riverCross },
{ .pattern = 0b01010001, .asset = ground_riverSplit },
// STRAIGHT
{ .pattern = 0b01000100, .asset = ground_riverStraight },
// corner
{ .pattern = 0b11000001, .asset = ground_riverCorner },
// L SHAPE
{ .pattern = 0b01000001, .asset = ground_riverBend },
// closed
{ .pattern = 0b01000000, .asset = ground_riverEndClosed },
{ .pattern = 0b00000000, .asset = ground_riverTile },
};
void generate_river(struct World *world, int previous) {
Color *map_data = world->map_data;
int map_size = world->size;
int x = previous % map_size, y = previous / map_size;
if (x == 0 || x == map_size -1 || y == 0 || y == map_size -1) return;
int local_minimum_map_i = previous;
int local_minimum_val = 255;
int gradients[4][2] = {{0,-1},{-1,0},{0,1},{1,0}};
for (int gradient_i = 0; gradient_i < 4; gradient_i++) {
int dx = CLAMP(x + gradients[gradient_i][0], 0, map_size - 1);
int dy = CLAMP(y + gradients[gradient_i][1], 0, map_size - 1);
int i = dy * map_size + dx;
if (i == previous || map_data[i].r == 1) continue;
if (map_data[i].b < local_minimum_val) {
local_minimum_map_i = i;
local_minimum_val = map_data[i].b;
}
}
if (local_minimum_val == 255) return;
map_data[local_minimum_map_i].r = 1;
generate_river(world, local_minimum_map_i);
}
void select_river_tile(struct World *world, int x, int y, size_t *river_i, size_t *direction) {
Color *map_data = world->map_data;
int map_size = world->size;
int surrounding[8][2] = {{-1,-1},{0,-1},{1,-1},{1,0},{1,1},{0,1},{-1,1},{-1,0}};
unsigned char river_tile = 0;
for (int surrounding_i = 0; surrounding_i < 8; surrounding_i++) {
int dx = CLAMP(x + surrounding[surrounding_i][0], 0, map_size - 1);
int dy = CLAMP(y + surrounding[surrounding_i][1], 0, map_size - 1);
if (map_data[dy * map_size + dx].r)
river_tile |= 1 << (7 - surrounding_i);
}
for (*river_i = 0; *river_i < 11; (*river_i)++) {
for (*direction = 0; *direction < 4; (*direction)++) {
if ((rivers[*river_i].pattern & RROT(river_tile, 2 * *direction)) == rivers[*river_i].pattern) {
return;
}
}
}
}
void gen_terrain(struct World *world) {
int map_size = world->size;
size_t global_minimum_map_i;
size_t global_minimum_val = 255;
world->map = GenImagePerlinNoise(map_size, map_size, 0, 0, 1.f);
world->map_texture = LoadTextureFromImage(world->map);
world->map_data = LoadImageColors(world->map);
for (size_t i = 0; i < map_size * map_size; i++) {
int x = i % map_size, y = i / map_size;
Color c = world->map_data[i];
if (c.r < global_minimum_val) {
global_minimum_map_i = i;
global_minimum_val = world->map_data[i].b;
}
world->map_data[i] = (Color) {
.r = 0,
.g = MAX(0, c.g - 64) / 32,
.b = c.b,
.a = 255
};
}
world->map_data[global_minimum_map_i].r = 1;
generate_river(world, global_minimum_map_i);
generate_river(world, global_minimum_map_i);
}
void gen_room(struct World *world) {
int map_size = world->size;
world->map = GenImageColor(map_size, map_size, BLACK);
world->map_texture = LoadTextureFromImage(world->map);
world->map_data = LoadImageColors(world->map);
}
//
// void unload_world() {}
void draw_world(struct World *world) {
int map_size = world->size;
Color *map_data = world->map_data;
Model wall = world->wall;
Model ground = world->floor;
for (int i = 0; i < map_size * map_size; i++) {
int x = i % map_size, y = i / map_size;
int gradients[4][2] = {{0,-1},{-1,0},{0,1},{1,0}};
for (int gradient_i = 0; gradient_i < 4; gradient_i++) {
int dx = x + gradients[gradient_i][0];
int dy = y + gradients[gradient_i][1];
int is_border = (dx < 0 || dx >= map_size || dy < 0 || dy >= map_size);
dx = CLAMP(dx, 0, map_size - 1);
dy = CLAMP(dy, 0, map_size - 1);
int height = MAX(map_data[dy * map_size + dx].g, is_border);
for (int step = map_data[i].g; step < height; step++) {
DrawModelEx(wall,
(Vector3){
.x = map_size * (x / (float) map_size - 0.5f),
.y = step,
.z = map_size * (y / (float) map_size - 0.5f)
},
(Vector3) {0, 1, 0}, gradient_i * 90.f, (Vector3) {1,1,1}, WHITE);
}
}
size_t river_i, direction;
if (map_data[i].r) {
select_river_tile(world, x, y, &river_i, &direction);
}
DrawModelEx(map_data[i].r ? assets[rivers[river_i].asset] : ground,
(Vector3){
.x = map_size * (x / (float) map_size - 0.5f),
.y = map_data[i].g, //- (map_gradient_magnitude_data[i].g < 2),
.z = map_size * (y / (float) map_size - 0.5f)
} , (Vector3) {0,1,0}, map_data[i].r ? direction * 90.f: 0,
(Vector3) {1,1,1},
WHITE);
}
}
|